In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold.
نویسندگان
چکیده
In clinical situations, bone defects are often located at load bearing sites. Tissue engineering scaffolds are future bone substitutes and hence they will be subjected to mechanical stimulation. The goal of this study was to test if cyclic loading can be used as stimulatory signal for bone formation in a bone scaffold. Poly(L-lactic acid) (PLA)/ 5% beta-tricalcium phosphate (beta-TCP) scaffolds were implanted in both distal femoral epiphyses of eight rats. Right knees were stimulated (10N, 4Hz, 5 min) five times, every two days, starting from the third day after surgery while left knees served as control. Finite element study of the in vivo model showed that the strain applied to the scaffold is similar to physiological strains. Using micro-computed tomography (CT), all knees were scanned five times after the surgery and the related bone parameters of the newly formed bone were quantified. Statistical modeling was used to estimate the evolution of these parameters as a function of time and loading. The results showed that mechanical stimulation had two effects on bone volume (BV): an initial decrease in BV at week 2, and a long-term increase in the rate of bone formation by 28%. At week 13, the BV was then significantly higher in the loaded scaffolds.
منابع مشابه
In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β...
متن کاملIntegration of mechanotransduction concepts in bone tissue engineering.
Mechanical stimulus has been identified for a long time as a key player in the adaptation of the musculo-skeletal tissues to their function. Mechanical loading is then an intrinsic variable to be considered when new developments are proposed in bone tissue engineering. By combining structural biomechanics and mechanotransduction aspects, a new paradigm is presented for bone tissue engineering. ...
متن کاملIn vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes
Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملComparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect
Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 19 شماره
صفحات -
تاریخ انتشار 2010